An Overview of ATM

- ATM is Asynchronous Transfer Mode.
- ATM is originally the transfer mode for implementing Broadband ISDN (B-ISDN).
- In 1988, CCITT (from ITU) issued the first two recommendations relating to B-ISDN:
 - I.113 Vocabulary of Terms for Broadband Aspects of ISDN
 - I.121 Broadband Aspects of ISDN
- In 1911, the ATM Forum was created with the goal of accelerating the development of ATM standards.

An Overview of ATM

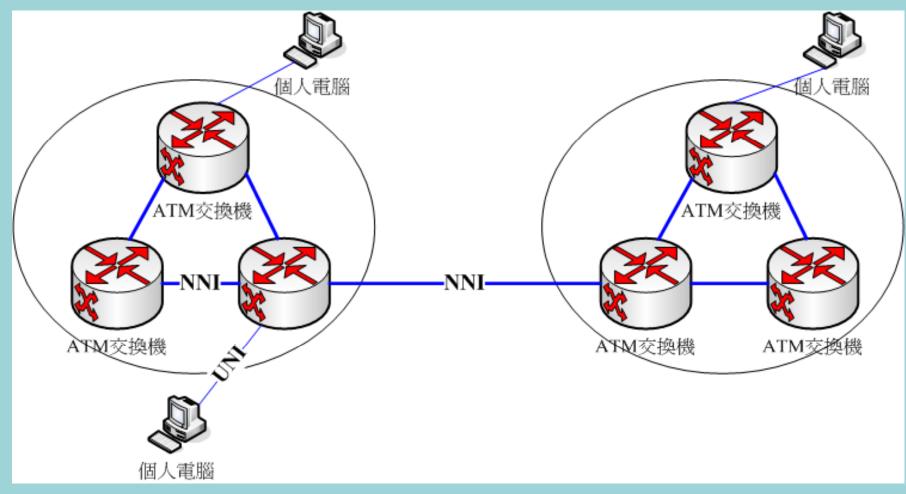
- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol:
 Q.2931
- Packets are called cells (53 bytes)
 - 5-byte header + 48-byte payload
- Commonly transmitted over SONET
 - other physical layers possible
- Connections can be switched (SVC), or permanent (PVC).

Variable vs. Fixed-Length Packets

- No Optimal Length
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
- Fixed-Length Easier to Switch in Hardware
 - simpler
 - enables parallelism

Big vs. Small Packets

- Small Improves Queue behavior
 - finer-grained pre-emption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68us while both arrive
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue

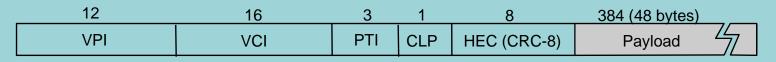

Big vs Small (cont)

- Small Improves Latency (for voice)
 - voice digitally encoded at 64KBps (8-bit samples at 8KHz)
 - need full cell's worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancellors
- ATM Compromise: 48 bytes = (32+64)/2

An Overview of ATM

- ATM operates on a best effort basis.
- ATM guarantees that cells will not be disordered.
- Two types of connections:
 - Point-to-point
 - Multipoint (Multicast)
- Four Types of Services:
 - CBR (Constant Bit Rate)
 - VBR (Variable Bit Rate)
 - ABR (Available Bit Rate) Flow Control, Rate-based, Credit-based
 - UBR (Unspecific Bit Rate) No Flow control.
- Aggregate Bandwidth vs. Shared Medium (FDDI, Fast Ethernet).

ATM Network Structure

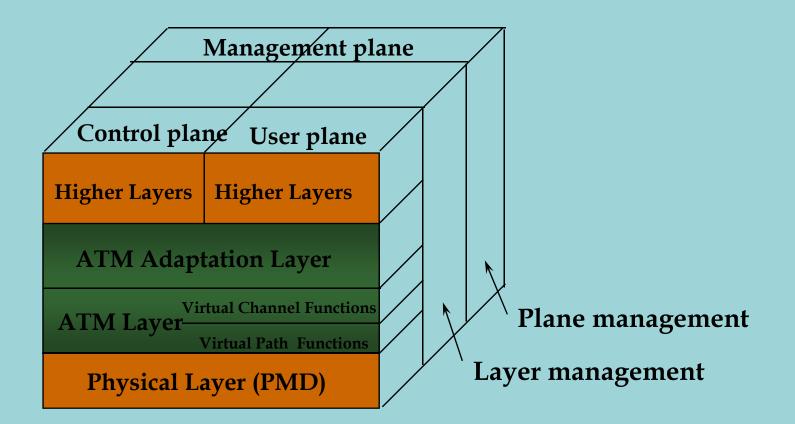


Cell Format

4	8	16	3	1	8	384 (48 bytes)
GFC	VPI	VCI	Туре	CLP	HEC (CRC-8)	Payload 7

- User-Network Interface (UNI)
 - host-to-switch format
 - GFC: Generic Flow Control (still being defined)
 - VCI: Virtual Circuit Identifier
 - VPI: Virtual Path Identifier
 - Type: management, congestion control, AAL5 (later)
 - CLPL Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

Cell Format



- Network-Network Interface (NNI)
 - switch-to-switch format
 - -GFC becomes part of VPI field

ATM Characteristics

- No error protection or flow control on a link-by-link basis.
- ATM operates in a connectionoriented mode.
- The header functionality is reduced.
- The information field length is relatively small and fixed.

ATM Protocol Stack

Physical Layer Interface Specification

- SONET STS-3C
- SONET STS-12
- DS3
- STP for ATM LAN
- etc.

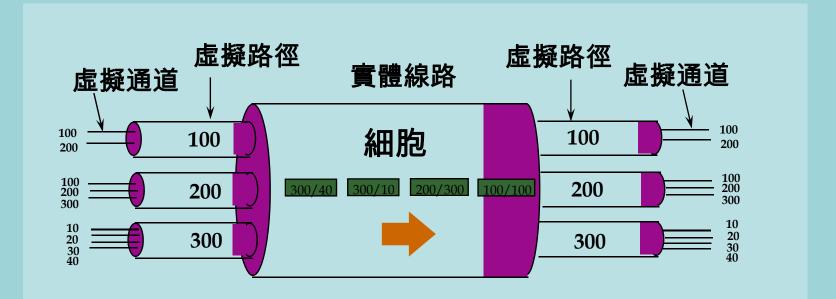
ATM Layer Service

- Transparent transfer of 48-octet data unit
- Deliver data in sequence on a connection
- Two levels of multiplexing
- Three types of connections
 - Point-to-point
 - Point-to-Multipoint
 - Multipoint-to-Multipoint
- Transport is best-effort
- Network QoS negotiation
- Traffic control and congestion control

ATM Layer Functions

- Cell multiplexing and switching
- Cell rate decoupling
- Cell discrimination based on pre-defined VPI/VCI
- Quality of Service (QoS)
- Payload type characterization
- Generic flow control
- Loss priority indication and Selective cell discarding
- Traffic shaping

Pre-assigned VPI/VCI Values


- Unassigned Cell Indication (VPI = 0, VCI = 0)
- Meta signaling (VCI=1)
 - Meta signaling is the bootstrap procedure used to establish and release a signaling VC. Not used for PVC setup.
- General broadcasting signaling (VCI=2)
- OAM F4 flow indication -- segment and endto-end (VCI=3 and VCI=4)
- Point-to-Point Signaling (VCI=5)
- Carriage of Interim Local Management Interface (ILMI) messages (VPI=0, VCI=16)

15

Cell Rate Decoupling and Cell Discrimination

- Cell Rate Decoupling
 - ATM sending entity adds unassigned cells to the assigned cell stream in order to adjust to the cell rate acquired by the payload capacity of the physical layer (R).
- Cell Discrimination
 - Meta signaling
 - General broadcast signaling
 - Point-to-point Signaling
 - Segment OAM F4 flow cell
 - End-to-end OAM F4 flow cell
 - ILMI message
 - User data

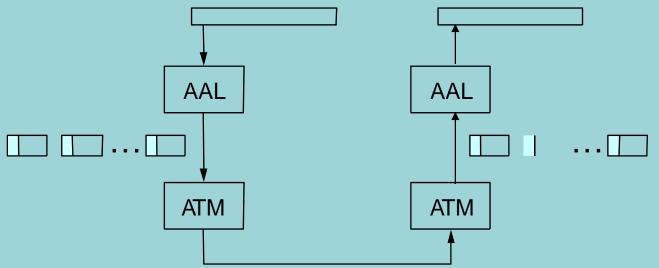
Virtual Channels, Virtual Paths, and the Physical Channel

Virtual Channels

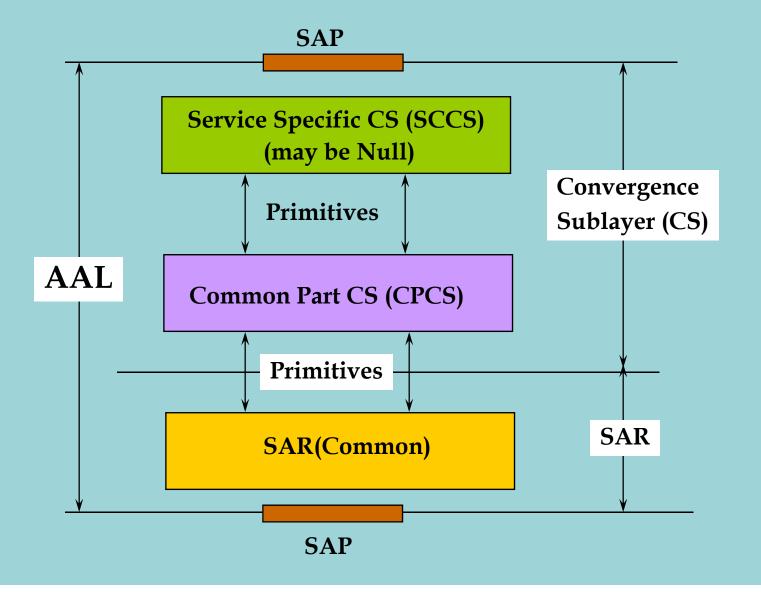
• The virtual channel (VC) is the fundamental unit of transport in a B-ISDN. Each ATM cell contains an explicit label in its header to identify the virtual channel.

• a Virtual Channel Identifier (VCI)

• a Virtual Path Identifier (VPI)

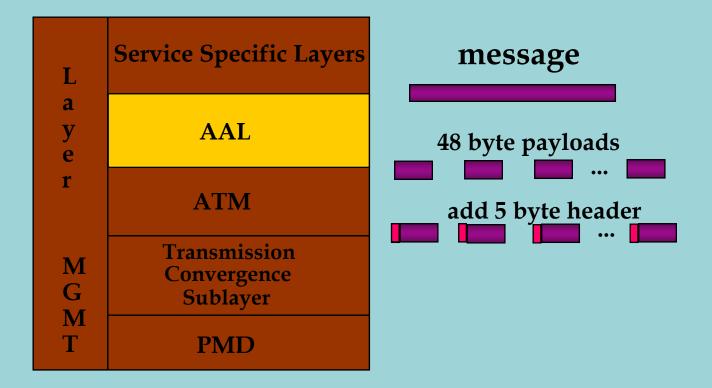

- A *virtual channel (VC)* is a communication channel that provides for the transport of ATM cells between two or more endpoints for information transfer.
- A Virtual Channel Identifier (VCI) identifiers a particular VC within a particular VP over a UNI or NNI.
- A specific value of VCI has no end-to-end meaning.

Virtual Paths


- A *Virtual Path (VP)* is a group of Virtual Channels that are carried on the same physical facility and share the same Virtual Path Identifier (VPI) value.
- The VP boundaries are delimited by Virtual Path Terminators (VPT).
- AT VPTs, both VPI and VCI are processed.
- Between VPTs associated with the same VP, only the VPI values are processed (and translated) at ATM network elements.
- The VCI values are processed only at VPTs, and are not translated at intermediate ATM network elements.

Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

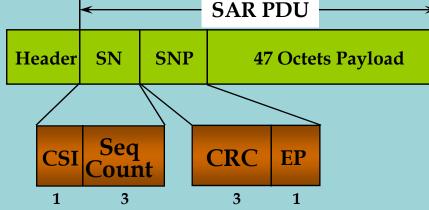


AAL Reference Structure

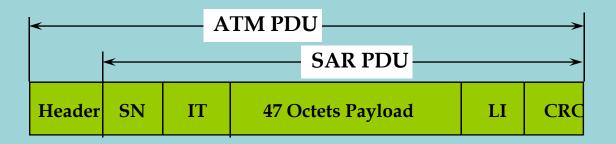
21

AAL

ATM Adaptation Layers (AAL)


- In order to carry data units longer than 48 octets in ATM cells, an adaptation layer is needed.
- The ATM adaptation layer (AAL) provides for segmentation and reassembly of higher-layer data units and for detection of errors in transmission.
- Since the ATM layer simply carries cells without concern for their contents, a number of different AALs can be used across a single ATM interface.
- The AAL maps the user, control, or management protocol data units into the information field of the ATM cell and vice versa.

AAL Service Classification


Attribute	Class A Circuit Emulation	Class B Packetized voice/video	Class C Connection Oriented Data	Class D Datagram	Signalling (Q.93B)	
Ambule	AAL1	AAL2	AAL 3	AAL 4	SAAL	
			AAL 5		JAAL	
Timing between source and destination	Req	uired	N			
Bit Rate	Constant		Varial			
Connection Mode	Connection orient		ted	Connectionless		

AAL 1 (Constant Bit Rate -CBR) Functions

- Emulation of DS1 and DS3 Circuits
- Distribution with forward error correction
- Handle cell delay for constant bit rate
- Transfer timing information between source and destination
- Transfer structure information (structure pointer)
- Provide indication of unrecoverable lost or errored information

AAL 2 Protocol Data Unit (PDU)

- SN: Sequence number
- IT: Information Type:BOM,COM,EOM,SSM
- Length Indicator

AAL 3/4

 Convergence Sublayer Protocol Data Unit (CS-PDU)

- CPI: commerce part indicator (version field)
- Btag/Etag:beginning and ending tag
- BAsize: hint on amount of buffer space to allocate
- Length: size of whole PDU

Cell Format

40	2	4	10	352 (44 bytes)	6	10
ATM header	Туре	SEQ	MID	Payload	Length	CRC-10

– Type

- BOM: beginning of message
- COM: continuation of message
- EOM end of message
- SEQ: sequence of number
- MID: message id
- Length: number of bytes of PDU in this cell